Differentiation of Mouse Embryonic Stem Cells into Hematopoietic Cells

Authors

  • Atashi, Amir
  • Bahar Vand, Hosein
  • Masoomi, Mohammad
  • Soleimani, Masood Department of stem cells, Royan Institute, Tehran, Iran.
Abstract:

Purpose: Differentiation of Mouse embryonicstem cells into Hematopoietic cells. Materials and Methods: In this study, we used EB formation system for Hematopoietic differentiation of mouse embryonic stem cell (Royan B1) in suspension culture. EBs cultured in medium with Hematopoietic inducer cytokines (SCF, TPO, GMCSF, IL3, Flt3 and EPO) .presence of hematopoietic differentiated cell assessed by RT-PCR and colony forming assay. Results: RT-PCR results showed the expression of two chain of mouse hemoglobin in differentiated cell. Also, colony forming assay confirmed results of RT-PCR. Colony of hematopoietic cells and benzidine positive cells that are representative of erythroid colonies were seen in semisolid media. Conclusion: The results of this study showed that cultivation of EBs in suspension medium with hematopoietic inducer cytokines is effective method for differentiation of embryonic stem cells into hematopoietic cells.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

full text

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

full text

The effect of BMP4 on mouse embryonic stem cell proliferation and differentiation into primordial germ cells

Background and Aim: Artificial gamete production from stem cells is a novel strategy for treatment of infertility. Among various stem cell sources, embryonic stem cells (ESC) can be considered as an appropriate source for in vitro formation of germ cells. In this study we evaluated the effect of BMP4 on proliferation and differentiation of mouse embryonic stem cells into primordial germ cells (...

full text

differentiation of human embryonic stem cells into insulin- secreting cells

introduction: type i diabetes mellitus is caused by autoimmune destruction of the insulin-producing β-cells. a new potential method for curing the disease is transplantation of differentiated insulin- secreting cells from human embryonic stem cells. methods: human embryonic stem cell lines (royan h1) were used to produce embryoid bodies. differentiation carried out by growth factor-mediated sel...

full text

A vector-based system for the differentiation of mouse embryonic stem cells toward germ-line cells

Objective(s):To culture thein vitro mouse embryonic stem cells (mESCs) and to direct their  differentiation to germ-line cells; in present study we used a vector backbone containing the fusion construct Stra8-EGFP to select differentiated ES cells that entered meiosis.  Retinoic acid was used to differentiate embryonic stem cells to germ cells. Materials and Methods: A fragment of Stra8 gene pr...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue None

pages  11- 18

publication date 2005-04

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023